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1

The Second-Order Self-Adjoint
Equation with Mixed Derivatives

Kirsten Messer

1 Introduction

In this chapter, we are concerned with the second-order, self-adjoint dynamic
equation (p(t)z2)Y + ¢(t)z = 0 on a time scale. When T = R, this reduces to
the usual self-adjoint differential equation, (p(t)z’)’ + ¢(t)z = 0.

This equation contains both the A and V derivatives, and so we begin in
Section 2 by establishing several results concerning the interaction of these two
derivatives. Also included in this section is a theorem which shows that under
certain conditions, the generalized exponential functions e,(t,t0) and é.(¢, o)
can be related to one another. In Section 3, we examine three second-order
linear dynamic equations and demonstrate that they can be written in self-
adjoint form. Additionally, we present solution techniques for one of the three
equations. The first results which are directly related to the self-adjoint equation
are contained in Section 4, which culminates with a reduction of order theorem.
We turn our attention to oscillation and disconjugacy in Section 5, where we
establish an analogue of the Sturm Separation Theorem, and, via the Polya
and Trench factorizations demonstrate the existence of recessive and dominant
solutions of the self-adjoint equation. The final section of the chapter, Section
6, discusses Riccati techniques as they relate to the self-adjoint equation. The
material in this chapter has been previously published in [92] and [93].

2 Preliminary Results

One of the fundamental tools which is used in the study of differential and
difference equations is L’Hopital’s Rule. A version of this crucial theorem for
A-derivatives, Theorem 1.3, can be found in [31, Theorem 1.119]. It is presented
here in a slightly different form. A similar result, Theorem 1.4, was developed in
[92] for V-derivatives.

‘We may want to employ L’Hdpital’s Rule to evaluate a limit as ¢t — +o0, so
we make the following definitions.

This is page 1
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2 Kirsten Messer

Definition 1.1. Let € > 0. If T is unbounded above, we define a left neighborhood
of 0o, which we denote by L.(co), by

1
LE(OO)z{tETZt>g}.
Similarly, if T is unbounded below, we define a right neighborhood of —oo, denoted
R (—o0) by
1
R.(—0) = {te’]l‘:t< —E}
‘We next define right and left neighborhoods for points in T.
Definition 1.2. Let ¢ > 0. For any right-dense to € T, define a right neighbor-
hood of to, denoted R (tg), by
R.(tg):={teT:0<t—1t <e}

Similarly, for any left-dense tg € T , define a left neighborhood of ty, denoted
LE (t,to), by

L (to)={teT:0<ty—t <€}
Theorem 1.3 (L’Hépital’s Rule for A-derivatives). Assume f and g are

A-differentiable on T, and let to € TU {o0}. Iftg € T, assume tq is left-dense.
Furthermore, assume

lim f(t)= lim g(¢) =0,
t—tg t—sty

tO
and suppose there exists € > 0 with
g(t)g®(t) <0 for all t& L,(to).

Then we have

P 1) 1t

lim inf < nf —= < limsup ——= < limsup fi (t)
t—ty g (t) t—ty g(t) t—ty g(t) t—sty g (t)

Theorem 1.4 (L’Hdpital’s Rule for V-derivatives.). Assume f and g are
V-differentiable on T and let tg € TU{—o0}. Iftg € T, assume ty is right-dense.
Furthermore, assume

lim f(t) = lim g(¢) =0,
Jim£(0) = Jim o0
and suppose there exists € > 0 with
g(t)gV (t) >0 for all t€ Re(to).

Then
v v
lim inf fv ®) < liminf M < limsup @ < limsup fv (t)
t—td g (t) t—td g(t) t—td g(t) t—td g (t)
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Proof. The proofs of these theorems are very similar, and we only include the
proof of the V-derivative statement here. Without loss of generality, assume g(¢)
and gV (t) are both strictly positive on R (to).

. v Vs
Let § € (0,¢], and let a := inf cp,(z) %%1, b 1= SUP e Ry (o) %. To com-
plete the proof, it suffices to show

inf @< sup ?Sb,

r
T T€Rs(to) g(T) T TERs(ta) (1)

as we may then let § — 0 to obtain the desired result.

We must be careful here, as either a or b could possibly be infinite. Note,
however, that since gV () > 0 on Rs(ty), we have a < co. Similarly, b > —oo. So
our only concern is if a = —co or b = co0. But, if a = —00, we have immediately

that
w L0
~ reRs(to) g(T)
as desired, and if b = oo, we have immediately that

o,

sup
TERs(to) g(T)

as desired. Therefore, we may assume that both a and b are finite. Then
ag¥ (1) < fYV(r) <bgY(r) forall 7€ Rs(to),

and by a theorem of Guseinov and Kaymakgalan [64, Theorem 3.4],

L] S S
/ ag¥(r) Vr < / V() vr< / bgV(T) V7 forall s,t€ Rs(tp), t<s.
t t t
Integrating, we see that
ag(s) —ag(t) < f(s) — f(t) < bg(s) —bg(t) forall s,t€ Rs(to), t <s.
Letting t — 3, we get

ag(s) < f(s) < bg(s) forall s e Rs(tg),

and thus
OO
T seRs(to) g(s) ~ $€ERs(to) g(s) ~
Then, by the discussion above, the proof is complete. - 0O

Remark 1.5. Although these theorems are only stated in terms of one-sided
limits, analogous results can be established if the limit is taken from the other
direction. To apply L’Hopital’s rule using A-derivatives and a right-sided limit,
to must be right-dense (or —co if T is unbounded below), and gg® must be
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strictly positive on a right neighborhood of . Similarly, to apply L’Hopital’s
rule using V-derivatives and a left-sided limit, ¢, must be left-dense (or oo if T is
unbounded above), and gg¥ must be strictly negative on some left neighborhood
of t().

Recall that our dynamic equation contains both A and V derivatives, and we
want to determine how the two types of derivatives interact with one another.
The interaction of these derivatives is closely tied to the function compositions
a(p(t)) and p(o(t)). Since o(p(t)) # t at points which are left-dense and right-
scattered, we need to consider these points separately in some instances. Simi-
larly, p(o(t)) # t at points which are right-dense and left-scattered, so we will
occasionally need to consider these points separately as well. To simplify the
notation, we define the following sets. Let

A = {t € T | tis left-dense and right-scattered}, and T, :=T\ A.
Similarly, let

B:={teT |tisright-dense and left-scattered}, and Tp:=T\ B.
Lemma 1.6. Ift € T4, then o(p(t)) =t. Ift € Tp, then p(o(t)) =t.

Proof. We will only prove the first statement. The proof of the second statement
is similar (see Exercise 1.7). If ¢ € T4, then either ¢ is left-scattered, or ¢ is both
left-dense and right-dense. If ¢ is left-scattered, then p(t) is right-scattered and it
is clear that o(p(t)) = t. If ¢ is both left-dense and right-dense, then o(t) = ¢ and
p(t) = t. Hence o(p(t)) = o(t) = t. In either case we get the desired result. [

Exercise 1.7. Prove the second statement of Lemma 1.6.

The following theorem allows us to interchange the A and V derivatives.

Theorem 1.8. If f : T — R is A-differentiable on T* and f* is rd-continuous
on T*, then f is V-differentiable on T\, and

A
o) RO vem
limg_,- f2(s) te€ A

Ifg: T — R is V-differentiable on T, and gV is ld-continuous on Ty, then g is
A-differentiable on T*, and

P CORELL

lim,_+ g¥(s) t€B.
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Proof. We will only prove the first statement. The proof of the second statement
is similar (see Exercise 1.9). First, assume ¢ € T 4. Then there are two cases:
Either

(i) ¢ is left-scattered, or
(ii) t is both left-dense and right-dense.

Case (i): Suppose t is left-scattered and f is A-differentiable on T*. Then f is
continuous at t, and is therefore V-differentiable at ¢. Next, note that p(t) is
right-scattered, and

A _ fle(p(®) — flp(®))
7 o(olt)) — 0
f(t) — 1(p(?))
t—p(t)
= Y@
Case (ii): Now, suppose t is both left-dense and right-dense, and f : T — R

is continuous on T and A-differentiable at ¢. Since ¢ is right-dense and f is
A-differentiable at t, we have that

1) = ()

s=t  t—§
exists. But t is left-dense as well, so this expression also defines fV(t), and we
see that

fv(t) = lim f(t) - f(s)

st t—s

720
= FA(p(t)).

So, we have established the desired result in the case where t € T 4.
Now suppose ¢t € A. Then ¢ is left-dense. Hence fV(t) exists provided

L 1) = £(5)

s—t t—s

exists.
As t is right-scattered, we need only consider the limit as s — ¢ from the left.
Then we apply L’Hépital’s rule {31, Theorem 1.119], differentiating with respect

to s to get
fim O =56 _ u
s—t— t—s s—t—

lim f2(s).

§—t—

~5(s) _
-1

Since we have assumed that f2 is rd-continuous, this limit exists. Hence f is
V-differentiable, and fV (t) = lim,_s_ f2(t), as desired. O
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Exercise 1.9. Prove the second statement of Theorem 1.8.

Corollary 1.10. Ifty € T, and f : T — R is rd-continuous on T, then
f:ﬁ F(r)AT is V-differentiable on T and

t v flp(t teT
[ f(T)AT} (p(t)) A

fo lim, - f(s) teA.

Iftg € T, and g : T — R is ld-continuous on T, then ftto g(T)VT is A-
differentiable on T and

[ /tg(T)VT]A _ | sty teTs
to

limg_,+ g(s) te€B.

The following corollary was previously established by Atici and Guseinov in
their work [20].

Corollary 1.11. If f : T — R is A-differentiable on T* and if f> is continuous
on T*®, then f is V-differentiable on T\, and

V() = fAP(@) forteT,.

Ifg: T — R is V-differentiable on T* and if g¥ is continuous on Ty, then g is
A-differentiable on T* and

g2 (t) =g¥o(t) forteTE.
Exercise 1.12. Let a € T and calculate the following derivatives:

() [fEots) as] s
i) [£f p(s) V]

Now, there are a couple more integral formulas that will be useful, the first of
which was established in {31, Theorem 1.75].

Lemma 1.13. The following hold:
(i) 79 f(s) As = p(t)f (2),
(i6) [y £(s) Vs =v()f(2),
(iii) 7 £(s) Vs = n(t)fo(2),
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() [y F(s) s =v(t)f*(1).
Exercise 1.14. Prove Lemma 1.13.

The next material deals with the “generalized exponential functions”, e,(¢, to),
and ép(t,to), which were discussed in Chapters 1 and 3.

Lemma 1.15. Let p : T — R. Then p is regressive if and only if —p® is v-
regressive, and 1+ pu(t)p(t) > 0 for oll t € T if and only if 1 + v(t)p”(t) > 0 for
all t € T. Similarly, if g : T — R, then q is v-regressive if and only if —q° is
regressive, and 1 — v(t)g(t) > 0 for allt € T if and only if 1 — p(t)g°(t) > 0 for
allt € T.

Proof. We will only prove the first statement. The proof of the second statement
is similar (see Exercise 1.16). First, assume p is regressive. We then wish to show
that —p” is v-regressive, that is, we wish to show that 1+ v(t)(p°(¢)) # 0.

Case 1: Fix t € T4. Then p(t) € T, and as p is regressive, we have that

1+ p(p(t))p(p(t)) # 0,

so, using the definition of u(t),

1+ [a(p(8)) — p(t)]lp(p(2)) # O.
But t € Ta, so o(p(t)) = t, and we get
1+ [t - p()]p°(t) #0,
or
1+v(B)p"(t) #0,
as desired.
Case 2: Fix t € A. Then ? is left-dense and right-scattered, so v(t) = 0. Hence

1+ u(t)pP(t) = 1+ 0pP(t) = 1 £0.

As 14 v(t)pP(t) #£ 0 for any t € T, we see that —p” is v-regressive.

Conversely, suppose —p” is v-regressive. We then wish to show that p is re-
gressive, that is, we wish to show that 1 4 p(¢)u(t) # 0.
Case 1: Fix t € Tg. Then o(t) € T, and, as —p” is v-regressive, we have that

L+ v(a(®)p’(a(t)) # O,

s0, using the definition of v(t),

1+ [o(t) = p(a(t)]p(p(a(t))) # 0.
But t € Tp, so p(o(t)) =t, and we get

1+ [o(t) —tlp(t) # 0,
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1+ pu(t)p(t) #0,

as desired.
Case 2: Fix t € B. Then t is right-dense and left-scattered, so p(t) = 0. Hence

14 p(t)p(t) =1+0p(t) =1+#0.

As 1+ u(t)p(t) # 0 for any t € T, we see that p is regressive.
To show 1+ pu(t)p(t) > 0 for all t € T if and only if 1 + v(¢)p(t) > 0 for all
t € T, simply replace “# 0” by "> 0” in the preceding proof. 0O

Exercise 1.16. Prove the second statement of Theorem 1.15.

Theorem 1.17 (Equivalence of delta and nabla exponential functions).
If p is continuous and regressive, then

ep(t, tg) = éﬂ%’n(t,to) = ée"(_pp)(t, to).
If q is continuous and v-regressive, then
éq(t,to) = eT—qr%I(t’to) = ee(_qa)(t,to).

Proof. We will only prove the first statement. The proof of the second statement
is similar (see Exercise 1.18). Suppose that p : T — R is continuous and regres-
sive, then by Lemma 1.15 we have that —p® is v-regressive. Furthermore, since p
is continuous, —p? is ld-continuous. Hence —pp" € R,. Then as R, is an Abelian
group under &,,, we see that ©,(—p”) = -1-_-,_% € R, and therefore é rffw:(t’to)
exists.

To complete the proof, it therefore suffices to show that ep(t,?p) solves the
initial value problem

v’ =0u(-p")y, ylto) = 1.

Let y(t) = ep(t,t0). Then

y(to) = ep(to,to) =1.

Furthermore,

yV(t) ey (t,to)
eﬁp(t>t0)
= pP(t)es(t,to)

= p°(t) [ep(t,to) — v(t)ey (t,%0)] -

Rearranging this equation, we get

ey (t.t0) [L+ v(t)pP (1)) = p* (t)ep(t, to),
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S0
PP(t)
1+ v(t)pr(t)
Putting this back in terms of y, we get
y¥ () = ©u(-p")y(t),

and the proof is complete. O

ey (t,to) = ep(t, to)-

Exercise 1.18. Prove the second statement of Theorem 1.17.

Example 1.19. Let T = hZ for h > 0, and let « € R, be constant, i.e.,

aeC\{%},

where C denotes the set of complex numbers. Given that
e_a(t,0) = (1 — ah)*,

use Theorem 1.17 to find é,(%,0).
We have that a € R,, and, as « is constant, it is continuous. Therefore
Theorem 1.17 applies, and we see that —a € R and

éa(t, 0) = €g(-a”) (t, to)
= eg(~a)(tito)
_ 1
e(—a)(t, to)
_ 1
(1 - ah)*

1 \*%
- (1-—ah> '

T=N?={n?:neN}L
Given that ey (t,0) = 2V*(v/)!, find é_1(t,0).

Example 1.21. Suppose p is a regressive constant and ¢ is a v-regressive con-
stant. Simplify the following expressions:

(i) ep(t,t0)éq(t, t0)
As p and ¢ satisfy the appropriate regressivity conditions, Theorem 1.17
applies and gives

€p (t, to)éq (t, to)

Exercise 1.20. Let

€p (t, t0)€e(_qo’) (t, tO)
€p (¢, tg)ee(_q) (t, to)
€pa(—q) (t,t0)-
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(i) ey (t,t0)éq(t, o)
Again, we have that p and g satisfy the conditions of Theorem 1.17. We
get

ey (t,t0)éq(tto) = &3, (_pny(t,t0)éq(t, to)
Ou(~p)es, (~pr)(t, 20)€q(t, to)
6u(—p)és, (—p)(t, ta)éq(t, to)
Su(—P)és,(-p)@.q(t: to)

= ©u(~p)ée, (-p)(t:to)-

Exercise 1.22. Suppose p is a regressive constant and ¢ is a v-regressive con-
stant. Simplify the following expressions:

(i) ep(t,t0)el (t,t0);

(ll) éi}{’v_’/ (t7 tO)éqV(ty tO);

(iii) (e2(t,t0))" -

3 Second-order Linear Dynamic Equations

Now, recall that we are interested in the second-order self-adjoint dynamic equa-
tion
Lz =0 where La(t) = (p(t)z®t))V + q(t)z(t). (1.1)
Here we assume that p : T — R is continuous, ¢ : T — R is 1d-continuous and
that
p(t) >0 forall teT.

Define the set D to be the set of all functions = : T — R such that z® : T* - R

is continuous and such that [p(t)z?]V : T% — R is ld-continuous. A function

x € D is said to be a solution of Lz =0 on T provided Lz(t) = 0 for all t € T%.
Now, consider the second order linear dynamic equations

Mz =0 where Myz = z2Y +p1(t)zY + pa(t)z, (1.2)

Moz = 0 where Myz = z2Y + a;(t)z® + aa(t)z, (1.3)
and

Msz = 0 where Maz = 2V +r(t)z¥ + ra(t)z?, (1.4)

where p;,a;,7; : T — R are 1d-continuous for ¢ € {1, 2}. Take Dss to be the set
of all functions z : T — R such that z is A -differentiable on T*, z® : T* - R
is V -differentiable on T% , and z”V : T% — R is ld-continuous. For i = 1,2, 3,
we say = is a solution of M;z = 0 on T provided z is in Dps, and M;z = 0 for all
te T%.
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Theorem 1.23. If pp is ld-continuous and p; € R, then the dynamic equation
(1.2) can be written in self-adjoint form, with

p(t) = &, (t, to) and q(t) = &, (t,0)p2(?)-

Furthermore, in this case, if x is a solution of (1.2) on T, then = is also a
solution of the self-adjoint form of the equation.

Proof. Suppose we have
2BV 4 p1(t)zY + pa(t)z = 0.

Assume p; is ld-continuous and p; € R . Then é,,(¢,t) is well defined and
positive. Multiplying through by é,, (¢,to), we get

épy (t,0)T2Y + &y, (t, to)p1(t)2Y + ép, (¢, t0)p2(t)z = 0.
Then, since &, (£,to) solves the IVP
yV =pi(t)y, ylto)=1,

we have that
[ép, (£,20)]Y = p1(t)ép, (¢, o).
So our equation becomes

éPx (tv to)mAv + [épl (t) to)]VxV + épl (t’ to)pg (t):’j =0.

Furthermore, 2 is V-differentiable, hence continuous, so by Corollary 1.11,
zV = £®° and we get

Ep, (8, 20)22Y + [6p, (£, 20)] V&2 + &, (¢, t0)pa(t)z = 0.
Then by the product rule, we see that
[épl (t7t0)wA]v + épl (t,to)pz(t):l} =0.

This equation is in self-adjoint form with p(t) and ¢(t) as desired.
Now suppose z is a solution of (1.2), ps is 1d-continuous and p; € R;. Based
on the above development, it is clear that z satisfies the dynamic equation

[0, (£, £0)22] + &y, (¢, to)p2(t)z = 0.

Hence to show « is a solution of this dynamic equation, we need only show that
z € D. Note that z2 is V -differentiable, and therefore continuous. Also,

[ém (t7 tO)mA]v = é;Yl (t7 tO)zp + ém (t7 tO)mAV =N (t)épl (t7 to)mp + éPl (t7 tO)xAvv

which is 1d-continuous, and therefore, z € D. J
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Corollary 1.24. If ay is ld-continuous and —a; € R}, then the dynamic equa-
tion (1.3) can be written in self-adjoint form, with

as (t)

pt) =é s (tto) and ot) = oS

é o (tto).
Furthermore, if T is a solution of (1.3), then z is also a solution of the self-
adjoint form of the equation.
Proof. Suppose we have

2V + a3 (t)z® + ag(t)z = 0.

Recall that if f : T — R is V-differentiable, then f(t) = f*(t) +v(t)fV (t). Thus
2 = 2 4 v(t)z?Y. Making this substitution, we have

22V + a1 () (@ + v(£)z2Y) + ay(t)z = 0,
and hence
(1 + a1 () (8)z2Y + a1 (t)z2? + ag(t)z = 0.

Now —a;(t) € R}, so the leading coefficient is positive and we may divide
through by it. Furthermore, as before, we have that 2 is continuous, so zV =
z?P. Thus, we get

AV a1(t) v ax(t)

A IR ) R T Y0

0.

This is in the form (1.2). As a; and ag are ld-continuous, so are (ﬁm and

a
zﬁgl—u) . Further,

>0,

(1 (1) ax(t) ) _ 14+ avi) —a)v) _ 1

1+ ap (t)v(t) 14 a1 (t)v(e) 1+ ay(t)v(t)
so the coefficient of the zV term is in R;}. Hence by Theorem 1.23 above, the
equation can be written in self-adjoint form, with p(t) and ¢(¢) in the desired
form, and solutions of equation (1.3) are also solutions of the self-adjoint form
of the equation. O

Corollary 1.25. Ifry is ld-continuous and (ry — vre) € R, then the dynamic
equation (1.4) can be written in self-adjoint form, with

p(t) = é(rl-urg)(t: to) and q(t) = T'g(t)é(.,l_u.,.z)(t,io).

Furthermore, if  is a solution of (1.4), then x is also a solution of the self-
adjoint form of the equation.
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Proof. Suppose we have
AV + 1)z +ro(t)a” =0.
Then
22V 4 ri(t)zY +ra(t)(x — v(t)zY) = 0,
or
gAY + (r(t) — v(t)ra(t))zY +ra(t)z = 0.
This is in the form (1.2), and the coefficients meet the requirements of Theorem

1.23. Thus the result follows. a

Example 1.26. Write the following dynamic equations in self-adjoint form:
(i) 322V =52V +6x=0

This dynamic equation is in the form of M;z. To find p; and p3, we need
to divide through by the leading coefficient. This gives us p1(¢t) = —g and
pa(t) = 2. Both p; and py are continuous and p; € R}. We then apply
Theorem 1.23 to get the self-adjoint dynamic equation

~ A v N
6(_%)(t, t(])CL' ] + 26(_%)(t, t())I =0.

(ii) 422V + 22 +3x=0
This dynamic equation is in the form of Myz. To find a; and ag, we need

to divide through by the leading coefficient. This gives us a1 (t) = }, and

as(t) = %. Both a; and ap are continuous, and —a; € R;}. We then apply
Corollary 1.24 to get the self-adjoint dynamic equation

v 3
A - A] 9\
[eﬁv( to)z +(4+u(t)>e
Exercise 1.27. Write the following dynamic equations in self-adjoint form:

(i) 22V —22V 42 =0;

o (t,t0)z =0.

(ii) 22V + 4z = 0;
(iit) 3z2Y + 4z — 2z = 0;
(iv) 522V —zV +22° = 0.

We now seek to develop techniques for solving second-order linear dynamic
equations of the form
z2Y + az¥ + Bzf =0,

where o and [ are real constants. As one would expect, we will use a charac-
teristic equation, and look for exponential solutions. In order for the roots of
our characteristic equation to be regressive, we impose the regressivity condition
1 —av(t) + Br2(t) #£0.




14 Kirsten Messer

Theorem 1.28. Let o, 3 € R with 1 — av(t) + fr3(t) # 0, and let
Mz =22V + azV + BzP.
Furthermore, suppose the characteristic equation
Mtar+B=0

has distinet real roots, A1 and \o. Then a general solution of Mz = 0 is given
by
z(t) = crey, (¢, to) + caex, (t, to)-

Proof. We first show that A; and A are regressive. By Lemma 1.15, it suffices
to show that —A; and —A; are v-regressive. So, consider

1= (=A)v@)A = (=Av(t) = (1+ M)+ dv(t))
1+ (M1 + Az)u(t) + (/\1)\2)1/2(t)
= 1-av(t)+ Br3(t)
£ 0.

Thus A; and A are regressive, thus the exponential functions ey, (t,t9) and
ex, (t,tg) are well defined and in the domain of our operator M.

Now, as A1 # Ag, we have that ey, (t,t0) and ey, (¢, o) are linearly independent.
Thus by Theorem 1.39, which will be stated in the next section, it suffices to
show that ey, (t,%0) and ey, (¢,to) are both solutions of Mz = 0. We will only
show that ey, (¢,%o) is a solution, as the other part of the proof is similar. Let
y(t) := ex, (¢, to). Then Theorem 1.17 and Corollary 1.11 apply, and we see that

A
(1) = Vigy — i
Y (t) = )\16/\1 (tw t0)7 and Yy (t) 1 /\1V(t) €, (t7 tO)'

We now substitute into our dynamic equation and get

My = Ouex(tto))” + aH_f‘\—iy(t)eh (t,to) + Bel_ (1, o)
= m?ime)\l (t, t(}) + ﬁ%\%@e)‘l (t,to)
+8 |ex, (t, o) - u(t)Hf\—iy(t)eM(t,to)]
= % [A] + s + B(L+ Aw(t) — BArv(t)]
= Ie-i——(/\tl—j%g—) [Af +ax + 4]
= 0.

Similarly ey, (¢, o) is a solution of Mz = 0. Hence z(t) = ciex, (t,t0) +c2ex, (¢, to)
is our general solution, as desired. O
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Example 1.29. Solve the following dynamic equations:
(i) zAY - 82V + 152° =0
This dynamic equation is in the form Mz = 0, where
Mz =22 + az¥ + Ba’.
In this case, we have @ = —8 and = 15 and
1 —av(t) + Bri(t) = 14 8u(t) + 1502(t) > 0.

Thus by Theorem 1.28 we need to find the roots of the “characteristic
equation”
A —8A+15=0.

This factors nicely, and we get
(A=3)(A-5)=0,

so our roots are Ay = 3 and Ag = 5. Applying the theorem, we see that our
general solution is

z(t) = cres(t, to) + caes(t, to).

(i) 22V — 52V +62° =0
This time we have a = —5 and 8 = 6, and
1 — av(t) + Bri(t) = 14 5u(t) + 602(t) > 0.
So our “characteristic equation” is
N _504+6=0,

which factors into
(A=2)(A-3) =0,

80 our roots are A\; = 2 and Ag = 3. Applying the theorem, we see that our
general solution is

z(t) = crea(t, to) + caes(t, to).

Exercise 1.30. Solve the following dynamic equations:
(i) z2Y - 122V + 11z° = 0;
(i) z2Y — 6z + 8z° = 0;

(iii) zAY — 72V +122° = 0.
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4 Abel’s Formula and Reduction of Order

We begin this section by looking at the Lagrange Identity for the dynamic equa-
tion (1.1). We establish several corollaries and related results, including Abel’s
Formula and its converse. We conclude the section with a reduction of order the-
orem. Some of the results in this section are due to Atici and Guseinov. Specif-
ically, Theorems 1.31 and 1.39, and Corollaries 1.35 and 1.38 were previously
established in their work {20].

Theorem 1.31. Iftg € T, and xo and x, are given constants, then the initial
value problem

Lz =0, z(to)=gz0, °(to)=m
has a unique solution, and this solution exists on all of T.

Definition 1.32. If z,y are A-differentiable on T*, then the Wronskian of x
and y, denoted W (z,y)(t) is defined by

z(t)  y(t)
Wz, = for T".
(z,9)(t) o o ort €

Definition 1.33. If z,y are A-differentiable on T*, then the Lagrange bracket
of x and y is defined by

{z;y}(t) = p()W(z,y)(t) forteT"
Theorem 1.34 (Lagrange Identity). If z,y € D, then
2(t)Ly(t) — y(t) La(t) = {z;y} ¥ (¢) forte Ty
Proof. Let z,y € D. We have
{z;y}¥ = [PW(z,y)¥
= [zpy® —ypz
= 2VpPyR + zlpy?)Y — y VP — ylpzt]Y
eVpyY +alpy®)Y —yVpPaY —ylpat]Y
alpy®)Y - ylpa?]Y
(lpy?1" + qy) - y(lpz*)¥ + gz)

A]V

H

= zLly-—ylLz,
where we have made use of the fact that 2 and y® are continuous and applied
Corollary 1.11. m]
Corollary 1.35 (Abel’s Formula). If x,y are solutions of (1.1), then
C
W(z,y)(t) = — fort e TF,
@)t = o5 S

where C is a constant.
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Proof. If z,y are solutions of (1.1), they belong to I. Then, by Theorem 1.34,
we have

z(t)Ly(t) — y(t)Lz(t) = {z;y}V (t) for t € T*.
But Lz = Ly =0, so
0={z;y}V(t) forte T~

Integrating, we see that
{z;9} = p(O)W(z,y)(¢) = C,
which gives the desired result. 0O

Definition 1.36. Define the inner product of z and y on [a, b] by

b
@)= [ sOuOTE
Corollary 1.37 (Green’s Formula). If z,y € D, then
(w,Ly) - (L:c,y) = [p(t)W(CL‘, y)]z

Proof. Integrating the expression in Theorem 1.34 gives the result immediately.
O

Corollary 1.38. If z,y are solutions of (1.1), then either
(i) W(z,y) #0 fort € T or
(i) W(z,y) =0 fort e T*.

Case (i) occurs if and only if x and y are linearly independent on T, and case
(i) occurs if and only if « and y are linearly dependent on T.

In the standard way, one uses the uniqueness theorem to prove the following
result.

Theorem 1.39. If z; and x3 are linearly independent solutions of (1.1) on T,
then a general solution of (1.1) is given by

:::(t) = clwl(t) + Cz:L‘g(t).

So, we see that, as we would expect with a second-order dynamic equation, we
need only find two linearly independent solutions in order to construct a general
solution. We now turn our attention to some results that will assist us in actually
finding these solutions.

Theorem 1.40 (Converse of Abel’s Formula). Assume u is a solution of
(1.1) with u(t) # 0 fort € T. If v € D satisfies

C

W(u,v)(t) = —,

(o)t = o

then v is also a solution of (1.1).
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Proof. Suppose that u is a solution of (1.1) with u(t) # 0 for any ¢, and assume
that v € D satisfies W{u,v)(t) = 5%. Then by Theorem 1.34, we have

u(t)Lo(t) — v(t) Lu(t) = {u;v}7 (8),

u(t)Lu(t)

It

POW (u,0)®)}Y
= bl
cv
0.
As u(t) # 0 for any t, we can divide through by it to get
Lo(t)=0 forteT".
Hence v is a solution of (1.1) on T. ]

Theorem 1.41 (Reduction of Order). Let ty € T*, and assume u s a so-
lution of (1.1) with u(t) # 0 for any t. Then a second, linearly independent
solution, v, of (1.1) is given by

¢ 1
Mﬂ:wﬂéﬂ@ﬂ@ﬂﬂﬂAs
forteT.

Proof. By Theorem 1.40, we need only show that v € D and that W (u,v)(t) =
;(% for some constant C. Consider first

u(t)  v(t)
uB(t) vA(t)

= ut)v?(t) —v(t)u?(t)

= un L [ 1 u?(t)
““ﬂ wﬁmm@w@“+mmmmﬂ

W (u,v)(t)

t 1
—A ) | e
= u(t)hul t 1 s U(t)ua(t)
= uw(t)d () o P(5)u(s)u” (5) p(t)u(t)u (t)
t 1

—u(tyu®(t)

1
p(t)

A )
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Here we have C = 1. It remains to show that v € ID. We have that

A _ ’LLA t; S —W‘(L
v = (*)/m O O O R OMOPT )

t 1 1
w2 / P () T s

Since u € D, u(t) # 0 and p is continuous, we have that v® is continuous. Next,
consider

o P(s)u(s)us (t

t 1
= ot / P OTOIZOR

, t 0
+pP (£)ul () [ /t ] WAS] T utyur(t)”

Now, the first and last terms are ld-continuous. It is not as clear that the center
term is ld-continuous. Specifically, we are concerned about whether or not the

expression ,
[ s

is ld-continuous. Note that the integrand is rd-continuous. Hence Theorem 1.10
applies and yields

1
[/t 1 ]V, ForzorgZol tE€Ta

. SN
to P(T)u(T)u" () y 1 e A
Ms—t— SGYals)as (s) :

First, suppose t € T4. Then o(p(t)) = t, so our expression simplifies to

+ v
[ / S A'r] _ 1 _ 1
to P(T)u(T)u’(7) pr(tyur(t)usr(t)  pr(t)ur(t)u(t)
Next, suppose that t € A. Then t is left-dense, and therefore,

lim o(s) =t.

s—t—
Then as p and u are continuous, we have

lim L = .
s—t— p(s)u(S)u"(S) - p(t)u2(t)
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Now for t € A, t is left-dense, so, if we like, we may write this expression as

1 1 1

Sz pu(shus(s) — p()ud()  prtyur(ult)’

This is the same expression we got for ¢ € T 4, so we have that

[/t—l—AT V=-————-—-1———— for t € T.
to P(T)u(T)u’(7) pP(t)ur(t)u(t)

This function is ld-continuous, and so we have that v € D). Hence by Theorem
1.40, v is also a solution of (1.1). Finally, note that as W(u,v)(t) = ﬁ # 0 for
any t, u and v are linearly independent. 0

The following example and exercise illustrate the use of the reduction of or-
der theorem. The reader should be aware, however, that they rely heavily on
properties of the generalized exponential functions which are not discussed here.
If additional background on the generalized exponential functions is desired, we
refer the reader to Chapters 1 and 3.

Example 1.42. Given that e;(¢,tg) solves the dynamic equation
22V — 32V 4 22° = 0,

use Reduction of Order to find a second linearly independent solution.
To use Theorem 1.41, we must first put our dynamic equation in self-adjoint
form. We get

R N AT L oa
[B(=3-20) (£ t0)72] " + 28(_3-20) (¢, to)T = 0.

So p(t) = é(_3—2.)(t, to). Let u(t) = e1(t, o). Then by Theorem 1.41, our second,
linearly independent solution, v is given by

t 1
v = ul) / P OrOIZON

t
1
ei(t,t — As.
1(t,t0) /tn é(—3—2)(s,t0)e1(s,to)eg (s,t0)
We now wish to simplify the denominator of the integrand. Note that
1@, 2= -1+ (-2) —v(#)(-1)(-2) = =3 — 2u(t),

and thus
€(—3—20)(t, t0) = €_1(t,t0)é_2(t, to)-

Applying Theorem 1.17 to each term of this product separately, we see that

é__l(t, to) = eel(t,to) and é-g(t,to) = eez(t,to).
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We will also move these terms to the numerator, to get

¢ e1(s,t0)ea(s, to)
to el(sitﬂ)eg(&t())
t ea(s,to)
to etlr(s’t())

i
= eilt,to) / ey (5, t0) As

to
= ei(t, o) [e2e1(t, to) — e201(t0, o))
€1 (t, to)ezel(t, to) - el(t, to)
erg201(t, to) — e1(t, to)
62(t, to) — €1 (t, to).

v(t)

€1 (ty tﬂ)

= eyt to)

I

Exercise 1.43. For each of the following, given that u(t) solves the given dy-
namic equation, use reduction of order to find a second, linearly independent
solution.

(i) u(t) =ei(t,to); zAY —4xV +32P =0
(i) u(t) =ea(t,to); a2V —8zV 41227 = 0;

(iii) u(t) = es(t,to); AV —7zV +10z° = 0;

5 Oscillation and Disconjugacy

In this section, we establish results concerning generalized zeros of solutions of
(1.1), and examine disconjugacy and oscillation of solutions.

Definition 1.44. We say that a solution, z, of (1.1) has a generalized zero at t
if
z(t)=0

or, if t is left-scattered and

z(p(1))z(t) < 0.
Definition 1.45. We say that (1.1) is disconjugate on an interval [a,b] if the
following hold.

(i) If z is a nontrivial solution of (1.1) with z(a) = 0, then z has no generalized
zeros in (a, b].

(i) If z is a nontrivial solution of (1.1) with z(a) # 0, then z has at most one
generalized zero in (a, b].
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Definition 1.46. Let w = supT, and if w < oo, assume p(w) = w. Let a € T.
We say that (1.1) is oscillatory on [a,w) if every nontrivial real-valued solution
has infinitely many generalized zeros in [a,w). We say (1.1) is nonoscillatory on
[a,w) if it is not oscillatory on [a,w).

Lemma 1.47. Let w = supT. If w < oo, then assume p(w) = w. Let a € T.
Then if (1.1) is nonoscillatory on [a,w), there is some tg € T, to > a, such that
(1.1) has a positive solution on [tg,w).

Proof. Assume (1.1) is nonoscillatory on [a,w), and then there is a nontrivial
solution, u of (1.1) such that u has only finitely many generalized zeros in [a, w).
Let b= max{t € T : u has a generalized zero at t}. Fix to € T such that t; > b.
Then either u > 0 on [tg,w) or —u > 0 on {tp,w). O

Our first oscillation theorem is the Sturm Separation Theorem. Loosely speak-
ing, this theorem tells us that (generalized) zeros of linearly independent solu-
tions of (1.1) separate one another. Thus we see that either all solutions of Lz = 0
will be oscillatory or they will all be nonoscillatory.

Theorem 1.48 (Sturm Separation Theorem). Let u and v be linearly in-
dependent solutions of (1.1) on T. Then u and v have no common zeros in T*.
If u has a zero at t; € T, and a generalized zero at ty > t; € T, then v has a
generalized zero in (t1,t2]. If u has generalized zeros at t; € T and ty > ¢ € T,
then v has a generalized zero in. [t1,12].

Proof. If w and v have a common zero at ¢y € T*, then

W (u, v) (to) = u(to)  v(to) —0

u?(to) v*(to)

Hence v and v are linearly dependent.

Now suppose u has a zero at ¢; € T, and a generalized zero at to > t; € T.
Without loss of generality, we may assume t5 > o(t;) is the first generalized zero
to the right of ¢1, u(t) > 0 on (1,%2), and u(tz) < 0. Assume v is a linearly
independent solution of (1.1) with no generalized zero in (t1, t2). Without loss of
generality, v(t) > 0 on [t1,t2).

Then on {t1,t2],

(E)A ) = v(t)ul(t) — u(t)®(t) _ c
v v(t)v7 (1) p(t)v(t)oe(t)’

which is of one sign on [t1,t3). Thus % is monotone on [t1,t2]. Fix t3 € (t1,12).

Note that
u(t1) u(ts)

() =0, and o(is)

>0
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But
ults) 0
v(ta) =

which contradicts the fact that % is monotone on [t1,t]. Hence v must have a
generalized zero in (i1, 1s}.

Finally, suppose u has generalized zeros at t; € T and 5 > t; € T. Assume
ts > o(ty) is the first generalized zero to the right of ¢;. If u(t;) = 0, we are in the
previous case, so assume u(t1) # 0. Then, as u has a generalized zero at t;, we
have that ¢; is left-scattered. Without loss of generality, we may assume u(t) > 0
on [t1,%2), u(p(t1)) < 0 and u(ts) < 0. Assume v is a linearly independent
solution of (1.1) with no generalized zero in [t;,t2). Without loss of generality,
v(t) > 0 on [t1,%2], and v(p(t1)) > 0. In a similar fashion to the previous case,
we apply Abel’s Formula to get that £ is monotone on [p(t1), t2]. But

u(p(t1)) u(ty) ults)
<0, >0, and <0,
v(p(t1)) v(t1) v(t2)
which is a contradiction. Hence v must have a generalized zero in [t1, t2]. 0

Theorem 1.49. If (1.1) has a positive solution on an interval T C T, then
(1.1) is disconjugate on I. Conversely, if a,b € T} and (1.1) is disconjugate on
[p(a),o(b)] C T, then (1.1) has a positive solution on {p(a),o(b)].

Proof. Assume (1.1) has a positive solution, » on Z C T. If (1.1) is not discon-
jugate on Z, then (1.1) has a nontrivial solution v with at least two generalized
zeros in Z. Then, without loss of generality, there are ;,{2 in Z such that

’U(t1) < 0,U(t2) <0, and ’U(t) >0 on (tl,tz) with (tl,tz) # 0.

Note that
v\ A w(®)v2 () — v(t)ud (t
) @ = = 15(2)110(53)) =
_ W (u,v)(t)
u(t)u (t)
¢
p(t)u(t)u’(t)

is of one sign on Z*. Hence 7 is monotone on Z. But

(3) &) <0,(2) @) >0, and (2) (t2) <.

This contradicts the fact that £ is monotone. Hence(1.1) is disconjugate on Z.
Conversely, suppose that (1.1) is disconjugate on the compact interval
[p(a), o(b)]. Let u,v be the solutions of (1.1) satisfying u(p(a)) = 0,u?(p(a)) = 1
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and v(o (b)) = 0,v2(b) = —1. Since (1.1) is disconjugate on [p(a), o(b)], we have
that u(t) > 0 on (p(a), s (b)], and v(t) > 0 on [p(a),o(b)). Then

z(t) = u(t) + v(t)
is the desired positive solution. O

Theorem 1.50 (Polya Factorization). If (1.1) has a positive solution, u, on
an interval Z C T, then for any x € D, we get the Polya Factorization

Lz = a1 (t){eafaaz]®}V (1) for t € T,

where

1
a;:=->0 onZ,
U

and
as=puu’® >0 onZ

Proof. Assume that u is a positive solution of (1.1) on Z, and let € . Then
by the Lagrange Identity (Theorem 1.34),

u(t)Lz(t) — z(t)Lu(t) = {u;z}V(t)
ut)La(t) = {wa}"(t)
1
Lx(t) = ;—(B{us 2} (t)
1
= m{pW(u,x)}v(t)
1 o [T18 v
= o) {puu [a] } (®)
= a1(t){a2 [mz]*}7 (1),
for t € Z, where a3 and «g are as described in the theorem. O

Example 1.51. Find two Polya factorization for the following dynamic equa-
tion. '
28V — 72V 4+ 10z° = 0.

The characteristic equation is
A2 —TA+10=0,

which has roots A\; = 2 and A2 = 5. Thus es(t,t9) and es(t,tp) are positive
solutions of this dynamic equation. For the first Polya factorization, let u(t) =
€2 (t, to). Then

1 A
ai(t) = ot ec2(t,to), and oo(t) = é_7—100(t)) (t: to)ea(t, to)es (¢, to)-
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We can use properties of exponential functions to simplify as(t). We get

as(t) = e3(t, to)ess(t, to),

and we see that

La = ega(t, to){e§ (t, to)eos (t, to) [eca (. to)z] 2}V .

For the second Polya factorization, we will let u(t) = es(t, o). Then

a(t) = =egs(t,t0), and aa(t) = ér_100t))(t, to)es(t, to)es (¢, to).

_1
65(t7 tO)

Again, we use properties of exponential functions to simplify as(t), giving

Olg(t) = eg<t’ t0)692(t»t0),
and thus
Lz = egs(t, to){ed (¢, to)ea(t, to)[eas (£, to) 2]}V .

Exercise 1.52. Find two Polya factorizations for each of the following dynamic
equations.

(i) zAY — 82V + 1227 = 0;
(ii) 2V —4zV + 3zP = 0;
(iii) AV — 32V 4 22° = 0.

Based on the previous example, and exercise, it is clear that Polya factoriza-
tions are not unique. There is a similar factorization, called a Trench factorization
which is essentially unique. The difference between a Polya factorization and a
Trench factorization is whether or not a particular integral diverges.

Theorem 1.53 (Trench Factorization). Let a € T, and let w := supT. If .
w < oo, assume p(w) = w. If (1.1) is nonoscillatory on [a,w), then there is
to € T such that for any x € D, we get the Trench Factorization

La(t) = B1(1){Ba[812]*}Y (t)
fort € [to,w), where B1, P2 >0 on [to,w), and
“ 1
to B2(t)

Proof. Since (1.1) is nonoscillatory on [a,w), (1.1) has a positive solution, u on
[to,w) for some #p € T. Then by Theorem 1.50, Lz has a Polya factorization on
[to,w). Thus there are functions «; and oy such that

At = co.

Lz(t) = a;(t){aaer 2]}V (t) for t € [to,w),
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with
o1 = — and ag = puu’.

u
Now, if

w

——At =
/tn as(t)

then take 3 (t) = ai(t), and B2(t) = aa(t), and we are done. Therefore, assume

that w o
———At < 0.
/t(, as(t)

In this case, let

_ ai(t) an - L
fu(t) = —‘—“ftw a_zl(_‘;jA d faoft) = e t)/ as(s) /a(t) az(S)A

for ¢ € [to,w). Note that as a1, aq > 0, we have 1, 82 > 0 as well. Also,

Loit = lm / > 5 At
fo ﬁQ(t) b beT Jhg a2(t)ft #(-‘K)AS fa(t) azl(s) As
_1

/ az(s) At
1
b—»w beT Jy, ft az(s) fu(t) az(s)As

b 1 A
S / S —
b—w,beT to ftw -OﬁAS

= lim ——1
- b—w,beT fb a(s)AS

= OQ.

At

Now let z € D. Then

<[ 200 | £ a0 et
ft agl(s)As ft ag(s)Asfa(t) ctg(s)A

for t € [to,w). So we get

B0 091 = axOlea o) [

for t € [tg,w). Taking the V -derivative of both sides gives

(BOBOs@PT = {a®o@z)*} /

As + ay(t)z(t)

oo (s)

v
+ {aa(t)on (t)x( O [/ 21(8)A3]
+loa(B)z(t)]Y
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for t € [tp,w). We now claim that the last two terms in this expression cancel.

Looking only at these last two terms, put the expression back in terms of our
positive solution u. We get

{oa®)m (2]}’ [ / l(s)As]v+[a1(t)z(t)]V

- vooor (3] || o] ]

Now consider two cases:
Case 1: t € T4. Then Theorem 1.8 applies, and we get

OO o e—— R

e 28] aer°
- pmwwm> h@]

a:(t)
u(t)
Case 2: t € A. In this case we have that p(t) = t, and we get

o @) [ ¢ v v
e or 53] | o]+ [56)
_[p(t)u(t)uU(t)] [Mﬂﬂﬁﬁ] . u(t):ltv(t) _ (E(t)uv(t)

I

= 0.

u{t)u’ (t)
p(t)u?(t) u?(t)
_u(t)a:Ap(t) —z(t)ulr(t)  u(t)zV(t) — z(t)u (2)
u?(t) u?(t)
—u()zV () + z()uV (t) + u(t)zV (¢) — x(t)uV (t)
u?(t)

= 0.

Here, we have made use of the fact that z,u € D, which gives us that z2? = zV
and ©?? = uV.

In either case, the last two terms cancel, and we have that

(BB Hz0)2} = {ea®)oa(B)z(t)]

It then follows that

Bu(t) (BB Dz} = an(t) {az ()l Wz ()2} = La(),
for ¢t € [to,w) and the proof is complete. 0
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Example 1.54. Find a Trench factorization for the dynamic equation
g2V = 72V 4 102” = 0,
assuming that sup T = oo. From an earlier exercise, we have that both
Lz = eoa(t, to) {3 (t, to)ees (¢, to) [eea (t, to)z] 2}V,

and
Lz = egs(t, to){eg (t, to)eon(t, to)es (t,t0)z] 2}V .

are Polya factorizations for this dynamic equation. Looking at the first one we
see that

R | o 1
LA = / A
to Ba2(t) o €5(t,to)eas(t, to)
b
lim / est:to) oy
b—oo Jy, €5 (¢, o)

b
fim [ 5 (efbalt o)At
to

Il

I

b—oo

1
lim — [esg2(b,to) — ese2(to, to)]
b—oo 3

b—oo 362(b,t0) 3

= OoQ.

il

Whereas, looking at the second one, we get

1 e 1
—At = / — At
to Ba(t) to eg(t, to)ee2(t, to)

b
t,t
= im [ elbi)
b—oo Jyo es(t,to)
b

= Jim [ 2 (B lt, 1)

b—o00 to
. 1
= bllglo -3 le2es (b, to) — e2e5(t0, to)]

. ea(bto) |1
= lim |-2270 4 -
b [ 3es(b,to) | 3
1
3
So, the first factorization is a Trench factorization, while the second one is not.

Exercise 1.55. Find a Trench factorization for each of the dynamic equations
in Exercise 1.52.
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The existence of a Trench factorization allows us to prove the following theo-
rem. Notice that the divergence of the integral in the Trench factorization plays

a key role here.

Theorem 1.56 (Recessive and Dominant Solutions). Let a € T, and let
w=supT. If w < o0, then we assume p(w) = w. If (1.1) is nonoscillatory on
[a,w), then there is a solution, u, called a recessive solution at w, such that u is
positive on [to,w) for some tg € T, and if v is any second, linearly independent

solution, called a dominant solution at w, the following hold.

(i) limy ., %8 =0,

(i) [y saratyerm At = oo,

(443) fbw E(t)v(%WAt < oo for b < w, sufficiently close, and

(iv) B (t,z"(’:)(t) > 2 (T(‘f)(t) for t < w, sufficiently close.

The recessive solution, u, is unique, up to multiplication by a nonzero constant.

Proof. As (1.1) is nonoscillatory, by Theorem 1.53, there is a Trench Factoriza-

tion:
La(t) = Bu(){B[B12]°}Y (t),
where 8;, 82 > 0 on [tg,w), and
- -——1-—At = 0.

to B2(t)

Then if u(t) = Bﬁ’ u is a positive solution of (1.1). Now, let

1 v o1
=7~ —— RS,

©®) =55 /. B

Then,

Lug(t) = Bi(t){BalBrvo)*}V (1)

1 R |
= ﬂl(t){ﬂzlﬁa . Bal®)

__AsA}Y(8)

’ 1
t

A2}V (1)

= BBt~}

Ba(t)
= Bt{1}Y
= 0.
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So vy is a solution of (1.1). Note that

. u(t) . 1
lim = lim — =0,
e~ o T e

as ft‘:: ﬁTl(tjAt = 00. Now

(EQ)A (t) _ W(u,’l}g)(t) — C

u()uo(t)  p()u(t)u’(t)’
where C is a constant by Theorem 1.35. Note that C # 0, since u and vy are
linearly independent. Integrating both sides of this last equation from g to £, we

get
vp(t) - /t C As
ut)  Ji, p(s)u(s)u?(s)
Taking the limit as ¢t — w, we get

. 'Uo(t) /w C
lim = As,
t—w ut) Sy, p(s)u(s)u(s)
and we see that

“ C
—————As =00,
./tg p(s)u(s)u(s)
as desired.

Now let v be any solution of (1.1) such that u and v are linearly independent.
Then

v(t) = c1u(t) + covo(t), where ¢ #0,

and
wh) oy M
t=w— v(t) t=w— cru(t) + cavo(t)
)
= lim —2®
t—w— Cl%((% +c2
= 0.

Now, let v be a fixed solution of (1.1) such that u and v are linearly independent.
Choose t; € [to,w) such that v(¢)v?(¢) > 0 on [¢1,w). Then for t € [t1,w),

ru\d vud — v W (v, u)(?) C
(5) )= ( o ) =) p(t)v(t;v"(t)’ where Gy #0.

Integrating, ,
u(t) _ult) _ Cy s
ORI / P ONOLAO N
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Letting t — w—, we see that

) _ [ G,
o) / FOLOIAO N

which implies that

w 1
/tl PR () <

Furthermore, for ¢ € [ty,w),

pt)o2 () _ pt)ut(t) _ p(OW(w,v)(t) _ _ Co

® ) wen ugwe el
It remains to show that Cy > 0. We have
o) _

o u(t)

and

v\ A N = W (u,v)(t) _ Cy
(u) () = u(tyue(t) — p(t)ult)ue(t)’
which implies that Cy > 0, as desired.

Finally, we need to establish uniqueness, up to multiplication by a nonzero
constant. Let u; be a recessive solution of (1.1}, and suppose uy is another
recessive solution. If u; and uy were linearly independent, us would be a dominant
solution. Hence 1, and us must be linearly dependent, and we see that ug = kug
for some nonzero constant k. 0

Example 1.57. Find recessive and dominant solutions for the dynamic equation
2V —71zV + 102 =0,

assuming that sup T = oo, and verify that the properties indicated in Theorem
1.56 hold.

By previous work, we know that ex(t, %) and es(t, o) are linearly independent
solutions of this dynamic equation. I now claim that u(t) := e2(,¢o) is the
recessive solution, and v(t) := e5(t,%p) is a dominant solution. To verify this, we
need to show four things:

First, we must show that

ut) | ealtto)

lim U _ gy S2lbte)
A T A ettt

This is clear by inspection. Second, we must show that

o0 1
/to P OTOrAC I
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Simplifying this expression, we get

° 1 e 1
1A= / i At
/to p(t)u(t)u(t) to €(=7—100t))(t, to)ea(t, to)eg (¢, ta)

b
t,t
= lim/ -eg(—’O)At
b—oo to 62(t7t0)

b
= dim [ HeB(t o)At
to 3

b—oo
.1
= lim = [65@2(b,t0) — €502 (to,to)]
b—oo 3
. es(b, tO) 1
= L
b—l»n;o [362(b,t0) 3]
= O0Q.

The third thing we must verify is that

© 1
/to PO @ <%

Simplifying this expression, we get

o 1 &0 1
/ ——— At = / _ At
to P(t)v(t)ve(t) to €(~ 7 100(2)) (t, to)es (t, to)eZ (, to)
_ 62 t to)
b—-»oo to €5 (t to
= lim ——1~(e265(t,t0))At
b—o0 to 3

. 1

= bhm _= [6295(b, to) d 6295(t0,t0)]
— OO 3

T e2(b, o)

= g [ Ses(brto) | 3]

= =< 00.

3

Now, finally, we must verify that

p(OVA() _ pip(0)
v(t) u(t)

for t sufficiently large,

or

é(—7—-10u()) (£, t0) €8 (t, to) e(—7—10u(t))(t7 to)es (¢, to)
(t to) ez(t,to)

for ¢ sufficiently large.
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Looking at the first expression, we get

e—r-100()) (B, 20)e (8, 80)  ecalt, to)ess(t, to)bes(t, to)
es(t, to) es(t, to)

5

52(t7t0)65(t7t0).

The second expression gives

&(—7—100(t)) (t: t0)e3 (¢, to) _ eea(t,to)ees(t, to)2ea(t, to)
e2(t, o) ez(t, to)
2
ea(t, to)es(t,to)

As both of the exponential functions eq(t,tg) and es(t,tp) are positive, we see

that
5 2

>
ea(t,to)es(t, to) ~ ea2(t,to)es(t, to)

holds for all ¢ € T. Thus u(f) = ea(t,o) is the recessive solution, and v(t) =
es5(t,tg) is a dominant solution as we claimed.

Exercise 1.58. For each of the dynamic equations in Exercise 1.52, find recessive
and dominant solutions and verify that the properties indicated in Theorem 1.56
hold.

6 The Riccati Equation

Usually, linear dynamic equations are considerably easier to solve than nonlinear
ones. In this section, we are going to discuss the relationship between a particular
nonlinear equation, called the Riccati equation, and our self-adjoint equation. We
will see that there is a correspondence between solutions of these two equations.
The Riccati equation is defined by

_ e Ra(t) = __Or
Rz =0, where Rz(t) = 2V (t) + q(t) + 270 T v @) (1.5)

for t € TZ. Here we assume that p : T — R is continuous, ¢ : T — R is Id-

continuous and that
p(t) >0forallteT.

Define the set D to be the set of all functions z : T* — R such that 2V : T — R
is 1d-continuous and such that p?(t) + v(t)z*(t) > 0 for any t € T%E. A function
z € Dg is said to be a solution of Rz = 0 on T* provided Rz(t) = 0 for all
t e Tf.

Then we have the following theorem:
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Theorem 1.59. Assume z € D has no generalized zeros in T, and z is defined
by the Riccati substitution

:L‘A
2(t) = p-———-————(tl( ) (t), (1.6)

fort € T*. Then z € Dg, and
Lz(t) = z(t)Rz(t)
forte Tk,

Proof. We first wish to show that z € Dg. We have by the quotient rule

e [p022017 _ @btz @) - pt)a® 0= (1)
: (t)‘[ =) ] = (@2 7) ’

which is 1d-continuous on T}, since x € D). Next, note that

PP(B)zt(t)
zP(t)
P () +v(t)zY (¢))
zP(t)
PP(t)=(?)

= T O

pP(E) +v(0)2°() = p°(t) +v(t)

for all ¢ € T%, since x has no generalized zeros in T. It remains to show that
z(t)Rz(t) = La(t) for t € TE. Suppressing the arguments, we get
(=)

pP A vzP .

[ AN\ Y AN BN 2

T 1 z

== |05) e ey ((5)

N pro(B2) AN 7
r ANV ALV P N\2( . Ap\2
z(pz oz x x

=, |2eER)Y —p gt A(:0)(2)

pP(ar +vahe)  (aP)

L xxP
NS T i M b s

zP zP zP(zP + vzV)
I/CL‘V> prPzV zpP(zV)?

Rz = =z zv+q+

= ANV vr_\ _prz”
= (pz=) <1+ — —— tart ——

(pz2)¥va¥ _ peta¥  p(aV)?
xP - P + TP
() "v¥ — pria¥ +pP(a”)(z27)
xP
zV (pPz?? + v(pz?)V) — priaz¥
xP

= (pz®)Y +qz+

= Lz+

= Lx+
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- Lo+ wV(pr) _ pr:BV

= Lz.

P

Again, we have made use of the fact that x € D and applied Theorem 1.8. O

Theorem 1.60. The self-adjoint equation (1.1) has a positive solution on T if
and only if the Riccati equation (1.5) has a solution z on T*.

Proof. First, assume that z is a positive solution of (1.1), and let z be defined by
the Riccati substitution (1.6). Then by Theorem 1.59, z € Dg, and Lz = zRz.
Since z is a solution of Lz = 0 and has no generalized zeros, it follows that
Rz =0, as desired.

Conversely, assume that z is a solution of the Riccati equation, (1.5) on T*.
Then z € Dg, so p?(t) + v(t)z(t) > 0 for all t € T, and z is continuous on T*.
This gives us that — (i)p € R}, and thus, by Lemma 1.15, § € R*. Now, let

to € T, and let z be the solution of the initial value problem

t
a2,
p(?)
Note that although % is only defined on T*, z is defined on T. Furthermore, as
z(t) = ez(t,%0), = is continuous and positive on T. Next, consider

w(to) =1.

POz ®]" = b))
= zV(t)zP(t) + 2(t)z" (t)
= ZV()zP(t) + 2(t)zP (1),

which is ld-continuous on T%. Hence x € D. Moreover, we see that

p(t)z(t)

)=~

o) = PO,
so by Theorem 1.59 Lz = zRz = 0. Hence z is the desired positive solution of
(1.1). O

The preceding theorem allows us to find solutions of the Riccati equation by
solving the corresponding self-adjoint equation.

Example 1.61. Solve the Riccati equation

V4126 (t, to) + (2r)* 0
z 7 , . =
(-7-12v) 0 e€_7—12u) (t, tO) + U(t)zﬂ

The associated self-adjoint equation is

o v ~
[6(—7-120(t, t0)7®] " + 128(_7_12.)(t, to)z = 0.
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Rewriting this as a second-order linear equation, we get
AV — 72V + lézp =0.
The characteristic equation, then, is
A —TA+12=0,

which has roots A\; = 3 and Ay = 4. Thus e3(¢,%p) and e4(t,to) are positive
solutions of this dynamic equation. So, let z(t) = e3(t,%o), and let .
p(t)z2(t)  Er_12)(t to)3ealt, to) .
£ e - = 38(_7—120)(t, to).
Z( ) :E(t) 63(t,t0) €(-7 121/)( ) 0)
By Theorem 1.60, z is a solution of our Riccati equation. We will verify this by di-
rect calculation. Recall that we can simplify z to get z(t) = 3é_3(¢,t0)é_a(t, to).
To simplify the notation, we are going to drop the argument, ¢, from our func-
tions. Then, substitution gives

Rz

i

v 5 ()?
z¥ + 126 _q7_ + ———
(=712 €712y TV

9(e” 5)2(e” 4)?
— 3A_ A_ v 12A_ A_ —_ -
(38-38-0)" +128-sb-ut 55050 =7

' 5 .8 NP 5 4 9é? 3874
= —09é_3é_4— 1287 ;€ 4+ 128_3é6_4 + m—
.. A R .. 9éf 48?4
= —96_38_4—126_4[é_3+3vé_3)+126_3é_4+ T+
. N
= —0¢_3é_4—36vé_3zé_4+ m'
Now, note that
éigé’i(; = [é_3 + 31/é_3] [é_4 + 4Vé_4]

= @_gb_4+TVé_3é_4+ 12028 _3é_4,

so we get
Rz = % [—Qé_gé_4 - 36Ué_3é_4] (1 + 31/)
+9 [6_3é6_q + Tvé_zé_s + 120%6_36_4]
= 3 i - [(—é_3é_q — 4vé_zé_g)(1 + 3v)
+é_gé g+ Tvé_zé_s + 120%6_38_4]
= 9 [—é_gé_4 - 4I/é_3é_4 - 3I/é_3é_4 bl 12U2é_3é_4
1+v

+é_38_4 + Tvé_zé_q + 120%6_3é_4]
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Exercise 1.62. Solve the following Riccati equations:
(2%)?
&(_ 4z, (t,to)+u(t) 2P

(i) 2V + 38 a-3)(t, t0) + =0;

iy LY . (") —0

(ll) 2%+ 106(—7—101/) (t7 tO) -+ é’(’_7_ln”)(t,t0)+u(t)zp = 0:
2

(iii) 2¥ + 128(_g_12,)(t, to) + (") =0.

&_g—12,y (Lito)+v(2)2?

Now, define A to be the set of functions

A= {u € Cpy(lp(a), o (b)), R) : u(p(a)) = u(o(b)) = 0}.
Here, C’;ld denotes the set of all continuous functions whose V-derivatives are
piecewise ld-continuous. Then we define the guadratic functional F on A, by

o(b)

Foy= [ PO - 0] v
Jpla
Definition 1.63. We say F is positive definite on A provided F(u) > 0 for all
u € A, and F(u) = 0 if and only if u = 0.

Lemma 1.64 (Completing the Square). Assume z is a solution of the Riccati
equation (1.5) on [p(a),b]. Let u € A. Then for all t € [a,b], we have

2)Y() = pPO)u (1) - qt)ud()
2
) [\/P”(Zt;(j-)zggzp(t) — () +v()zr()uY (t)] .

Proof. Let z be a solution of the Riccati equation (1.5) on {p(a), b], and let u € A.
Then for ¢ € [a, b],
EOLP@)Y = V)) + 2 ()W ()Y
= 2()7 (1)) + 2P (D) (@ (R)u” (B) + u(t)u” (2))
- [”q(t) ), )
pe(t) +v(t)2e (1)
+2° ()P (t)uY (t) + 2P (t)u(t)u” (t)

_ _ (@)
= O - S e

+2°(t)u(t)uY () + 2°(t)u” () (u(t) — v(t)u" (t))
= —q(t)uz(t) _ (zp(t))2u2(t)

pP(t) + v (t)zr(t)
+22 (t)u(t)u” () — 2P (v (t) (u" ())?

T (PR
= POLTO)? -t - ST
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+22° (Du(tyu” () — (p7() + 2P (v () (¥ (1))
= PO’ () - gt)u’()

2 (t)u(t)

(B v

(1) + v()2r (t)u” (t)
O

Theorem 1.65. Let x be a solution of (1.1) on [p(a),o(d)], and let c, de
[o(a), o(b)] with p(a) < ¢ L o(c) <d < a(b). If c = p(a), assume z(c) = 0. Now,
let
0 pla) <t<e
uw(t) =4 z(t) c<t<d
0 d<t<o).

Then u € A, and Fu = C + D, where

202 (a() v(e)=0

C=
PO (o) >0,
D p(d)z?(d)z(d) v(d)=0

e @  y(d) >0,

Proof. Let z, u be as described in the statement of the theorem. We first claim
that u € A. It is apparent from the definition that u € C},([p(a), o(b)], R), and
that u(o(b)) = 0. The fact that u(p(a)) = 0 is also clear from the definition unless
p(a) = c. In this case, however, u(p(a)) = u(c) = z{c) = 0, by our assumption
on z. So, u € A, as desired. Now consider

a(b)
Fu= [P OWTO)F - dnl6)] Ve
pla)

We have u(t) = 0 on [p(a),c) U [d,a(b)], and u¥ = 0 on [p(a),c) U (d,a(b)], so
we get

d
Fu= [ POCTOF - a0e@) vt

/p(c)
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Breaking up the integral, we get
c p(d)
Fu= [ POV [ 06T T
p(c) c

d c
o uV 2 _ u2
+./p<d)”“)( (1) vt / gt (1) Ve

p(c)

p(d) d
- / q(t)u(t) Vt — / q(t)u?(t) Vt
Je p(d)
Now, we apply Lemma 1.13 to get

Fu = p()(u¥()*w(c) +p*(d)(u" (d)*v(d)
~q()u?(ev(c) - g(d)u?(d)v(d)

(@ (@)
+/p ’ P(A)(u’ (1))* Vit~ /p ’ a(t)u?(t) Vit.

39

Since u(d) = 0, the fourth term in this expression vanishes. Furthermore, u(t) =
z(t) on [c,d), and uV (t) = zV (t) on (c, d), thus we may substitute z for u in the
two remaining integrals. We make this substitution and then evaluate the first

of the two remaining integrals by parts, which yields

P(e)(wY (€))*v(c) + p°(d) (u¥ (d))*v(d)
(e)(e) — a(dpu®(d)v(d)

—q
¢ (
+ / Y ) () Vi / " ) Vi
P’(c)
—qg\c

Fu

Il

c

()u
= ()@Y ()*v(c) + p*(d)(u¥ (d)*v(d)
(©)u?(c)v(c) + plp(d))=™ (p(d))z(p(d))

(d)
~p(e)a® ()a(c) - / ™ et @] =) vt

p(d)
/ (t)(z(t))? Vit

= p()(uY()?w(e) +p(d)(u ())2V(d)
~g()u?(e)v(e) + plp(d)z* (p(d))x(p(d))

(d)
—p(e)z®(c)z(c) — /p z(t)Lz(t) Vi

= p()(uY())?w(c) +p(d)(u (d)*v(d)
~g(e)u? (v (c) + p(p(d)z* (p(d))z(p(d))
—p(c)z® (c)z(c)

= C+D,
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where

and

C = wIp()uT(0))” - v(c)g(c)(ulc))®
~p(c)z(c)z(c),

D = v(@d)p’(d)(u" (d))* + p(p(d))=* (p(d))z(p(d)).

Note that if v(c) = 0, then C = —p(c)z?(c)z(c). If v(c) > 0, then c is left-
scattered, so we get

C

2
= PO [%] — (@)

—p(c)z®(c)z(c)

_ 1%;2@ — v(e)a(e)a(c) - p(e) (c)a(c)
+p7(e)z™ ()z(c) — P ()5 (0)z(c)

= PP ot

VO
C .’EA — QJAP c
(20 [alee(e) + XA R

= 2 a7 (om0
~1()2(e) ()2 (e) + a7 ()

— pp(c):l;z(c) _ pp(C).'E(C) (x(c) - :v/’(c)>

v(c) v(c)
_ PP(92’(c) = pP(9)2%(c) + PP ()a(c)ar(c)
v(c)
_ Ps9e(o)
v(c) ’

so C is as described in the statement of the theorem. Now note that if v(d) = 0,
then D = p(p(d))z?(p(d))z(p(d)) = p(d)z>(d)z(d). If v(d) > 0, then d is left-
scattered, so we get

D

= v(d)p*(d)(u¥(d))* +p*(d)z" (d)z*(d)

2 P
= v(d)p?(d) [W] +P”(d)mp(d)w
_ PEEE)’  pddad) pd)(ed)

v(d) v(d) v(d)
_ Pde(da(d)

v(d)
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Thus D is as desired, and the proof is complete. O

Theorem 1.66 (Jacobi’s Condition). The self-adjoint equation (1.1) is dis-
conjugate on [p(a),o(b)] if and only if F is positive definite on A.

Proof. First, suppose (1.1) is disconjugate on [p(a), o(b)]. Then there is a positive
AN
solution, z, of (1.1) with on [p(a), o(b)]. Let z(t) := pM®2 () Then by Theorem

1.60, z is a solution of Rz =0 on [p(a), b]. Thus by Lera;fxtl)la 1.64, for any u € A,
(@)Y = p)(u¥ () - q(t)u?(t)
2
B RO ) Ny o ESY  E Y
[ e~ V0 T <t)]

for t € [a,b]. In fact, it can be shown that this equation holds at ¢ = o(b) as
well. As the equation holds on [a, o(b)], we may integrate from p(a) to o(b), and
noting that u(p(a)) = u(c(b)) = 0, we get

2
}_u=/ (b)[ 2P (t)ult) _ /pl’(t)+1/(t)zf’(t)uv(t)} Vi,
p

@ [VPr(t) +v(t)zr(t)

so Fu > 0 for all v € A. Furthermore, it is clear that if u = 0, then Fu = 0.
Now suppose Fu = 0. Then

AL ) O EZOIMC)

pP() + v (t)zr(t)

so u solves the initial value problem

v _ Gl —
= e u, u(o(b))=0
on [a,0(b)] Since j_’;z,, € R}, the solution of this IVP is unique, and gives

u(t) = 0 on [a,0(b)]. As u(p(a)) = 0 as well, we get u(t) = 0 on [p(a),o(b)].
Hence, F is positive definite on A.

‘We will prove the converse of this statement by contrapositive. Suppose (1.1)
is not disconjugate on [p(a), o(b)]. Then there is a nontrivial solution z of (1.1)
such that either £(p(a)) = 0 and z has a generalized zero in (p(a), o(b)], or = has
two generalized zeros in (p(a), o(b)]. In either case, let ¢ < d be the two smallest
generalized zeros of = in [p(a), o(b)]. Then, let

0 pla)<t<e
u(t) =19 z(t) e<t<d

0 d<t<o).
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Applying Theorem 1.65, we then have 7 = C + D < 0. As u is not identically
0, this tells us that F is not positive definite. By contrapositive, the proof is
complete. O

Theorem 1.67 (Sturm Comparison Theorem). Let
Liz = [ ()28 + (),

Loz = [p2(t)z2]Y + ga(t)z.

Assume q1(t) > q2(t) and 0 < py(t) < pa(t) for t € [p(a),o(b)]. If Liz(t) =0 s
disconjugate on [p(a), o(b)], then Loz (t) = 0 is disconjugate on [p(a),o(b)].

Proof. Let
a(b)

A= [ RO6TO? - @) T

J p(a)

a(b)

A= [ OGO - a®RO] v

J p(a)

Assume that Lyz(t) = 0 is disconjugate on [p(a), o(b)]. Then by Theorem 1.66,
the quadratic functional J; is positive definite on A. Then, for u € A, we have

Fou

o(b)
/ (5B (u” (1))? - g2(t)u?(t)] Vi

(a)
o(b)
> [ TR - a®eo)] v
pla)

= flu‘

Hence F; is positive definite on A. Then, again by Theorem 1.66, Loz = 0 is
disconjugate on [p(a), o(b)]. O

Theorem 1.68. Let Lix, Loz be as in the Sturm Comparison Theorem. Then
if Lyz = 0 is disconjugate on [p(a),c(b)] for i =1,2, and if

p(t) = \ip1(t) + Aap2(t), and

q(t) = Maq(t) + A2qa(t),

where Ay > 0, Ao > 0, then Lz = 0 is disconjugate on [p(a), o (b)].

Proof. Suppose L;z = 0 is disconjugate on [p(a),c(b)] for i = 1,2. Then the
quadratic functionals F; and F; are positive definite on A. Then for u € A, we
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have

o(b)
Fu = / [p°(8)(u¥ (1))? = q(t)u?(t)] Vi
p(a)

o (b)
= /( ) [(Aapa(t) + Aap2()) (¥ (£))® — (A1qr(t) + Aaga(t))u?(2)] Vit
pla

o(b)
= /( ) [PY) (WY (8))? — qu(t)u?(t)] Vit
ola

a(b)

L / [P0 (£)? — aa(t)(t)] vt
p(a)

= Fiu+ Fau.

Therefore, F is positive definite on A, and hence Lz = 0 is disconjugate on
[p(a), o (b)]. O

We summarize some of the major results in the following theorem.
Theorem 1.69 (Reid Roundabout Theorem). The following are equivalent:
(i) Lz = 0 is disconjugate on [p(a),c(b)];
(#) Lz =0 has a positive solution on [p(a),c(b)];
(111) The quadratic functional F is positive definite on A;
(iv) the Riccati differential inequality Rz < 0 has a solution on [p(a), b].

Proof. By Theorem 1.49, (i) and (ii) are equivalent. By Theorem 1.66, (i) and
(iii) are equivalent. By Theorem 1.60, (ii) implies (iv). It remains to show that
(iv) implies (i). So, assume Rz < 0 has a solution, z on [p(a}, ], and let

w(t) := Rz(t) for t€a,b].
If p(a) < a, let w(p(a)) = 0, and if o(b) > b, let w(o (b)) = 0. Then z is a solution

of the Riccati equation

(2°(t))? -
0+ o) —w®) + S e =

on [p(a),b]. This implies that the self-adjoint dynamic equation
(p(H)z*)Y + (a(t) = w(®))z =0
is disconjugate on [p(a), o(b)]. But
q(t) —w(t) = ¢(t)

on [p(a),c(b)], so by Theorem 1.67, Lz = 0 is disconjugate on [p(a),o(b)], and
the proof is complete. O
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ABSTRACT. In this paper, we examine the dynamic equation [p(t)z®(t)]Y + ¢(t)z(t) = 0 on a
time scale. Little work has been done on this equation, which combines both the delta and nabla
derivatives. Several preliminary results are established, including Abel’s Formula and its Converse.

We then proceed to investigate oscillation and disconjugacy of this dynamic equation.
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1. NABLA DERIVATIVES

In this paper, we are concerned with the second-order self-adjoint dynamic equa-

tion
[p()z?]Y + q(t)z = 0.

We begin our work by reviewing some properties of the nabla derivative, and then in
section 2, we proceed to establish several results concerning the interaction of the two
types of derivatives. In the third section of the paper, we develop Abel’s Formula,
and its converse, which we then use to prove a reduction of order theorem. In the
final section, we turn our attention to oscillation and disconjugacy, establishing first
an analogue of the Sturm Separation Theorem, and then, via the Polya and Trench

factorizations, we demonstrate the existence of recessive and dominant solutions of
the self-adjoint equation.

Here, it is assumed that the reader is already familiar with the basic notions of
calculus on a time scale, using the delta-derivative (or A-derivative). The reader may
be less familiar, however, with the nabla-derivative (or V-derivative) on a time scale,
as developed by Atici and Guseinov [1], and so we include here a brief introduction to
its properties, as previously established in other works, stating them without proof.
Readers desiring more information are directed to (2] and [1}.

Throughout, we assume that T is a time scale. The notation [a, b] is understood
to mean the real interval [a, b] intersected with T.
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Definition 1.1. Let T be a time scale. For ¢t > inf(T), the backward jump operator,
p(t) is defined by
p(t) =sup{s e T:s <t}

and the backward graininess function v(t) is defined by

If f: T — R, the notation f*(t) is understood to mean f(p(t)).

Remark 1.2. Here, we retain the original definition of (). This definition is con-
sistent with the original literature published on V-derivatives. It is inconsistent,
however with the current work on a-derivatives. When working with a-derivatives,
the a-graininess, p, is defined to be pg := a(t) —t. When a(t) = p(t), then, we
would have p, = p(t) —t = —v(t). This inconsistency is unfortunate, but we feel it is
more important that we remain consistent with the way v(t) was defined in previously
published work. To minimize confusion, we recommend the notation u,(t) = p(t) —t

be used in work that is to be interpreted in the more general a-~derivative setting.

Definition 1.3. Define the set T, as follows: If T has a right-scattered minimum m,
set T, := T — {m}; otherwise, set T, = T.

Definition 1.4. Let t € T,. Then the V-derivative of f at t, denoted fV(t), is
the number (provided it exists) with the property that given any € > 0, there is a
neighborhood U C T of ¢ such that

1£ (o)) = F(s) = Y ®)[p(t) — 8]| < elp(t) — s
forall s € U.

For T = R, the V-derivative is just the usual derivative. That is, f¥ = f.
For T = Z the V-derivative is the backward difference operator, fV(t) = Vf(t) :=
f) = fe-1).

Definition 1.5. A function f : T — R is said to be left-dense continuous or ld-
continous if it is continuous at left-dense points, and if its right-sided limit exists
(finite) at right-dense points.

Definition 1.6. It can be shown that if f is ld-continuous then there is a function
F, called a V-antiderivative, such that FV(t) = f(t) for all t € T. We then define
the V-integral (V-Cauchy integral) of f by
t
f(s) Vs = F(t) — F(to).
to

Theorem 1.7. Assume f : T — R is a function and lett € T,. Then we have the
following:
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1. If f is nabla-differentiable ot t, then f is continuous at t.
2. If f is continuous at t and t is left-scattered, then f is nabla-differentiable at t

with
v _ L) = fp(t))
f (t) - I/(t) .
3. If t is left-dense, then f is nabla-differentiable at t iff the limit
1) = £6)

s—t t—s
exists as o finite number. In this case
v . f) = f(s)
t) = lim ————=.
FU(E) = lim —=——=

4. If f is nabla-differentiable at t, then
o) = F(8) = v(®)FY ().

Other properties of both the V-derivative and the V-integral are analogous to
the properties of the A-derivative and A-integral. For example, both differentiation
and integration are linear operations, and there are product and quotient rules for
differentiation, as well as integration by parts formulas. Readers interested in the
specifics can find more details in [2].

2. PRELIMINARY RESULTS
We are interested in the second-order self-adjoint dynamic equation
(2.1) Lz =0 where Lz = [p(t)z®]Y + q(t)z.
Here we assume that p is continuous, ¢ is 1d-continuous and that
p(t) >0 forall teT.

Define the set D to be the set of all functions z : T — R such that z® : T* — R is
continuous and such that [p(t)z?]Y : T® — R is ld-continuous. A function z € D is
said to be a solution of Lz = 0 on T provided Lz(t) = 0 for all ¢t € T}.

Since the equation we are interested in, equation (2.1), contains both A- and V-
derivatives, we establish here some results regarding the relationship between these
two types of derivatives on time scales.

One of the following results relies on L'Hopital’s rule. A version of L’Hopital’s
rule involving A-derivatives is contained in [2]. We state its analog for V-derivatives
here. As we may wish to use L'Hopital’s rule to evaluate a limit as ¢ — oo, we
make the following definition.
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Definition 2.1. Let € > 0. If T is unbounded below, we define a right neighborhood
of —oo, denoted R.(—o0) by

RE(—oo)={t€']I‘:t<——1—}.

£

We next define a right neighborhood for points in T.

Definition 2.2. Let € > 0. For any right-dense tq € T, define a right neighborhood
of to, denoted Rc(to), by

R(ty) ={teT:0<t—ty<e}.

Theorem 2.3 (L’Hépital’s Rule). Assume f and g are V-differentiable on T and let
to € TU{—o0}. Ifty € T, assume ty is right-dense. Furthermore, assume

lim f(t) = lim g(t) =0,

t—td t—st]
and suppose there exists € > 0 such that g(t)g¥ (t) > 0 for allt € R.(ty). Then
£(t) f®) f(t) ()

liminf === < liminf —= < limsup —= < limsup .
iy g (1) -t g(t) toty 9 (t) ttg gV (1)

Proof. Without loss of generality, assume g(t) and gV (¢) are both strictly positive on
Re(to)-

Let 6 € (0,¢], and let a := inf,cpy) g—%, b = SUP,¢R; o) g—z%. To complete
the proof, it suffices to show

a < inf -Jf—(—7——)~ < i(—Tl <b,
TER5<t0) g(T) T€R5(t0) g(T)
as we may then let § — 0 to obtain the desired result.

We must be careful here, as either a or b could possibly be infinite. Note, however,
that since gV(7) > 0 on Rs(ty), we have a < co. Similarly, b > —oo. So our only
concern is if a = —oo or b = 0. But, if ¢ = —0c0, we have immediately that

f(7)

a< inf —=,
T€R5(to) g(T)

as desired, and if b = oo we have immediately that

f(7)

sup ——= <b,
TeRaao)g(T)

as desired. Therefore, we may assume that both a and b are finite. Then
ag¥ (1) < fY(1) <bgV(r) for all T € Rs(to),

and by a theorem of Guseinov and Kaymakgalan (3],

[at @ vr< [0 vr< [[0"0) Ve torall ste Ratto), <
t t t
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Integrating, we see that
ag(s) — ag(t) < f(s) — f(t) < bg(s) —bg(t) forall s,t€ Rs(to), ¢t <s.
Letting t — t§, we get |

ag(s) < f(s) <bg(s) forall se Rs(to),

and thus
a < inf ﬂs—)g sup fﬂgb
s€Rs(to) g(S) s€R;s(to) g(S)
Then, by the discussion above, the proof is complete. O

Remark 2.4. Although the preceding theorem is only stated in terms of one-sided
limits, an analogous result can be established if the limit is taken from the other
direction. Left neighborhoods of oo or of points in T are defined in similar manner
to right neighborhoods. To apply L’Hopital’s rule using a left-sided limit, ¢o must
be left-dense (or oo if T is unbounded above), and gg¥ must be strictly negative on
some left neighborhood of tp.

In order to determine when the two types of derivatives may be interchanged, we
need to consider some of the points in our time scale separately, so let
A:={t € T | t is left-dense and right-scattered}, T4:=T\ A.
Additionally, let
B:={t €T |tisright-dense and left-scattered}, Tp:=T\ B.

The following lemma is very easy to prove, and we omit the proof here.
Lemma 2.5. Ift € T4 then o(p(t)) =t. If t € Ty then p(o(t)) = t.

Theorem 2.6. If f : T — R is A-differentiable on T* and f2 is rd-continuous on
T* then f is V-differentiable on Ty, and

) Ae®) teTa
fv(t) - { lim, . f2(s) te€ A

If g : T — R is V-differentiable on Tx and g is ld-continuous on T, then g is
A-differentiable on T*, and

2 = { 7o)  teTs

lim,_+ gV(s) te€ B.

Proof. We will only prove the first statement. The proof of the second statement is
similar. First, assume t € T4. Then there are two cases: Either

1. t is left-scattered, or
2. t is both left-dense and right-dense.
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Case 1: Suppose t is left-scattered and f is A-differentiable on T*. Then f is continu-
ous at t, and is therefore V-differentiable at ¢. Next, note that p(t) is right-scattered,
and '

R Fo(o®) = Fo()
P = == oy =)
£ - )
t—p(t)
= 7).

Case 2: Now, suppose t is both left-dense and right-dense, and f : T — R is continuous
on T and A-differentiable at t. Since t is right-dense and f is A-differentiable at ¢,

we have that
o 10 = £

s=t 1—8
exists. But t is left-dense as well, so this expression also defines fV(t), and we see
that

s=t t—s
= A
= fp(t)).
So, we have established the desired result in the case where t € T 4.

Now suppose t € A. Then t is left-dense. Hence fV (t) exists provided
o SO = 1(6)

s—t t—s

exists.

As t is right-scattered, we need only consider the limit as s — ¢ from the left.
Then we apply L'Hopital’s rule [2], differentiating with respect to s to get

i ZO =16 _ g ~10) _ gy gy

s—t— t—s s—->t— s—t—
Since we have assumed that f2 is rd-contmuous, this limit exists. Hence f is
V-differentiable, and f¥(t) = lim,_;_ f2(t), as desired. O

Corollary 2.7. Ifto € T, and f : T — R is rd-continuous on T then ft TYAT is
- V-differentiable on T and

v R
! ) fle(®) ift €Ty
[ / (T)AT] - { lim,_, f(s) t€ A.

Ifto €T, and g : T — R is ld-continuous on T then ft T)VT is A-differentiable on

T and . A _
Ut I (TWT] - { ig(?i o(s) Zfet EB.TB
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The following corollary was previously established by Atici and Guseinov in their
work [1].

Corollary 2.8. If f : T — R is A-differentiable on T* and if f2 is continuous on
T*, then f is V-differentiable on Ty and

fv(t) = pr(t) fort € T,.

Ifg: T — R is V-differentiable on T* and if gV is continuous on T,, then g is
A-differentiable on T" and

g>(t) =gV (t) forte T~

3. ABEL’S FORMULA AND REDUCTION OF ORDER

We begin this section by looking at the Lagrange Identity for the dynamic equa-
tion (2.1). We establish several corollaries and related results, including Abel’s For-
mula and its converse. We conclude the section with a reduction of order theorem.
Some of the results in this section are due to Atici and Guseinov. Specifically, Theo-
rem 3.1 and Corollary 3.5 were previously established in their work [1]. Our conditions
on p and q are less restrictive than Atici and Guseinov’s, and our domain of interest,
D, is defined more broadly. In spite of this, however, many of the proofs contained
in [1] remain valid. As this is the case, we have omitted the proofs of some of the
following theorems, and refer the reader to Atici and Guseinov’s work.

Theorem 3.1. Ifty € T, and zy and z, are given constants, then the initial value
problem

Lz =0, z(t)) ==z, z°(t)=m

has a unique solution, and this solution exists on all of T.

Definition 3.2. If z,y are A-differentiable on T*, then the Wronskian of z and y,
denoted W (z,y)(t) is defined by

z(t)  y(t)
z2(t) y>(t)

Definition 3.3. If z,y are A-differentiable on T*, then the Lagrange bracket of x

Wz, y)(t) = for t € T".

and y is defined by
{z;y}(t) = p(t)W (z,y)(¢) fort e T".
Theorem 3.4 (Lagrange Identity). If z,y € D, then

z(t)Ly(t) — y(t) La(t) = {z;4}7(t) fort € T}
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Proof. Let z,y € D. We have

{z;9}Y = [pW(z,y)]"
= [zpy® — ypz®]”

= zVpy™ +zlpy®]Y —yV e — ylpztY

= 2"py" +alpy®Y — yVp'aY - ylpat]Y

= a[py?]Y — ylpz?]Y

= z(lpy®]¥ + @) — y([p=®]" + qz)

= zLy—ylLz,

where we have made use of the fact that z® and y® are continuous and applied
Corollary 2.8. O

Corollary 3.5 (Abel’s Formula). If z,y are solutions of (2.1) then

W(z,y)(t) = p—(CE fort € T*,

where C 1s a constant.

Definition 3.6. Define the inner product of x and y on [a, b] by

b
(@)= [ sV
Corollary 3.7 (Green’s Formula). If z,y € D then
(z, Ly) — (Lz,y) = [p(&)W (z,y)]5.

Theorem 3.8 (Converse of Abel’s Formula). Assume u is a solution of (2.1) with
u(t) #0 fort € T. If v € D satisfies '

W (u,v)(t) = 5%

then v is also a solution of (2.1).

Proof. Suppose that u is a solution of (2.1) with u(t) # 0 for any ¢, and assume that
v € D satisfies W{(u,v)(t) = T(i)' Then by Theorem 3.4, we have

u(t)Lv(t) — v(t)Lut) = {u;v}Y(t)
u(t)Lu(t) = [pO)W (u,v)()]"
C
~ bl
= OV
= 0.
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As u(t) # 0 for any t, we can divide through by it to get
Lu(t)=0 forte T;.
Hence v is a solution of (2.1) on T. O

Theorem 3.9 (Reduction of Order). Let tq € T, and assume u is a solution of (2.1)
with u(t) # 0 for any t. Then a second, linearly independent solution, v, of (2.1) is
given by

t 1 .
v(t) = u(t / ———————As
O =) | o)

forteT.

Proof. By Theorem 3.8, we need only show that v € D and that W (u,v)(t) = p—% for
some constant C. Consider first

W o)) = ultp(t) —o(tyud ()
ol [ A W)
= (t)[ @ . 20w T pue @

I S S
00 [ e

o [ L ()
= ult) (t)/m PO E) T pu @)

t 1
) | s

_ b
p(t)
Here we have C = 1. It remains to show that v € D. We have that
¢ 1 u?(t)
A A
v(t) = u~ (¢ / _—— A ———————
@ = w0 | e e et ®)

YN AT SV S
= v / e PO

Since u € D,u(t) # 0 and p is continuous, we have that v® is continuous. Next,

consider
’UA v _ uA t_____,_l— s v L Y
P @ = [p(ﬂ (t) / p(s)u(s>uo(s)A] *[u(t)]
= PO [ S

P uAp ' 1 S V_ uA(t)
P ) U P () } aBur ()
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Now, the first and last terms are ld-continuous. It is not as clear that the center term
is 1d-continuous. Specifically, we are concerned about whether or not the expression

[/t: mAS]V

is 1d-continuous. Note that the integrand is rd-continuous. Hence Corollary 2.7
applies and yields

v . ‘
[/t——i—m} z{m ifteT,
00 R 1
1, P(T)u(T)ue(T) lims- soubwg t € A

Simplification of this expression gives

t 1 v 1
—————A’r} = ——/———— forteT,.
l:/to p(r)u(r)u’(7) pP(t)ur(t)u(t) '
This function is 1d-continuous, and so we have that v € D. Hence by Theorem 3.8, v
is also a solution of (2.1). Finally, note that as W (u,v)(t) = ;(15 # 0 for any ¢, u and
v are linearly independent. O

4. OSCILLATION AND DISCONJUGACY

In this section, we establish results concerning generalized zeros of solutions of
(2.1), and examine disconjugacy and oscillation of solutions.

Definition 4.1. We say that a solution, z, of (2.1) has a generalized zero at t if
z(t) =0

or, if ¢ is left-scattered and
z(p(t))x(t) < 0.

Definition 4.2. We say that (2.1) is disconjugate on an interval [a, b] if the following
hold. ‘

1. If z is a nontrivial solution of (2.1) with z(a) = 0, then z has no generalized
zeros in (a, b].

2. If  is a nontrivial solution of (2.1) with z(a) # 0, then z has at most one
generalized zero in (a, b].

We will investigate oscillation of (2.1) as ¢ approaches the supremum of the time
scale. Let w = supT. If w < 0o, we assume p(w) = w. Furthermore, if w < oo, we

allow the possibility that w is a singular point for p or g.

Definition 4.3. Let w = sup T be as described above, and let a € T. We say that
(2.1) is oscillatory on [a,w) if every nontrivial real-valued solution has infinitely many
generalized zeros in [a,w). We say (2.1) is nonoscillatory if it is not oscillatory.
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The following Lemma is a direct consequence of the definition of nonoscillatory.

Lemma 4.4. Let w = sup T be as described above, and let a € T. Then if (2.1) is
nonoscillatory on [a,w), there is some to € T, to > a, such that (2.1) has a positive
solution on [tg,w).

Theorem 4.5 (Sturm Separation Theorem). Let u and v be linearly independent
solution of (2.1). Then u and v have no common zeros in T*. If u has a zero at
t, € T, and a generalized zero at té > t; € T, then v has a generalized zero in (t1,1s].
If u has generalized zeros at t; € T and to > t; € T, then v has a generalized zero in
[tl,tQ].

Proof. If u and v have a common zero at ¢y € T, then

u(te)  v(to)

WP ty) v2(to) =0

Wu,v)(to) =

Hence u and v are linearly dependent.

Now suppose u has a zero at t; € T, and a generalized zero at t, > t; € T.
Without loss of generality, we may assume t; > o(t;) is the first generalized zero to
the right of ¢, u(t) > 0 on (¢1,t2), and u(tz) < 0. Assume v is a linearly independent
solution of (2.1) with no generalized zero in (¢1, t2). Without loss of generality, v(t) > 0
on [t1,ta].

Then on [t1, 2],
u\ A v()ur(t) — u(t)v?

v v(t)ve () ()t (t)’
which is of one sign on [t;,t3). Thus ¥ is monotone on [t1,1,]. Fix t3 € (t1,t2). Note
that

ut) _, ol
ot) 0 A ) 7Y
But
U(tz)
o) =

which contradicts the fact that £ is monotone on [t;,t;]. Hence v must have a gener-
alized zero in (t1, ta].

Finally, suppose u has generalized zeros at ¢t; € T and t; > t; € T. Assume
ty > o(t;) is the first generalized zero to the right of ¢t;. If u(t;) = 0, we are in
the previous case, so assume u(t;) # 0. Then, as u has a generalized zero at t;, we
have that ¢; is left-scattered. Without loss of generality, we may assume u(t) > 0
on [t1,t2), u(p(t1)) < 0 and u(ty) < 0. Assume v is a linearly independent solution
of (2.1) with no generalized zero in [t,t2). Without loss of generality, v(t) > 0 on
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[t1,%2], and v(p(t1)) > 0. In a similar fashion to the previous case, we apply Abel’s
Formula to get that  is monotone on [p(t1),t2]. But

u(p(t1)) <0, u(ty) >0, and u(tz) <0,
v(p(th)) v(t1) v(ta)
which is a contradiction. Hence v must have a generalized zero in [t, ta]. O

Theorem 4.6. If (2.1) has a positive solution on an interval T C T then (2.1) is
disconjugate on . Conversely, if a,b € TE and (2.1) is disconjugate on [p(a), o(b)] C
T, then (2.1) has a positve solution on [p(a),c(b)].

Proof. If (2.1) has a positive solution, v on Z C T, then disconjugacy follows from
the Sturm Separation Theorem.

Conversely, if (2.1) is disconjugate on the compact interval [p(a), o(b)], then let
u,v be the solutions of (2.1) satisfying u(p(a)) = 0,u”(p(a)) = 1 and v(o (b)) =
0,v2(b) = —1. Since (2.1) is disconjugate on [p(a), o(b)], we have that u(t) > 0 on
(p(a),a(b)], and v(t) > 0 on [p(a),o(b)). Then

z(t) = u(t) + v(t)
is the desired positive solution. O

Theorem 4.7 (Polya Factorization). If (2.1) has a positive solution, u, on an interval
I C T, then for any x € D, we get the Polya Factorization

Lz = oy (t){ao[a1z]*}V (t) fort € T,

where

and

oy :=puu’ >0 onlZ.

Proof. Assume that u is a positive solution of (2.1) on Z, and let z € D. Then by the
Lagrange Identity (Theorem 3.4),

w(t)Lx(t) — z(t)Lu(t) = {u;z}V(t)
1
La(t) = @{PW(%W)}VU)
1 - [Z714 v
= a‘a{p““ H } ®)
= ar(t){az [ma]*}¥ (1),

for t € 7, where o and an are as described in the theorem. O
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Theorem 4.8 (Trench Factorization). Let a € T, and let w := supT. If w < oo,
assume p(w) = w. If (2.1) is nonoscillatory on [a,w), then there is to € T such that
for any x € D, we get the Trench Factorization

La(t) = Bi(t){alBr2)*}7 (t)
for t € [to,w), where B1, B2 > 0 on [to,w), and
v 1
1y Ba(t)

Proof. Since (2.1) is nonoscillatory on [a,w), (2.1) has a positive solution, u on [to,w)

At = o0

for some ¢y, € T. Then by Theorem 4.7, Lz has a Polya factorization on [tg,w). Thus
there are functions «; and s such that

Lz(t) = o (t){aaaz)*}V () for t € [to,w),

defined as described in the preceding theorem. Now, if

|
/ ——At =00
to (&%) (t)

then take 51(t) = a1 (t), and Fa(t) = as(t), and we are done. Therefore, assume that

v o1
At < oo.
»/to as(t)

In this case, let

fu(t) = al( - and Ba(t) = aa(t) QYN T L As
ft aelds ¢ a(s)  Jow 0a(s)

for ¢ € [tg,w). Note that as a;, a2 > 0, we have £y, 52 > 0 as well. Also,

w 1 b 1
——At = lim / At
to ﬂz(t) b—w,beT to ft ag(s)ASfa'(t) azl(s)AS
A
b 1
o [
bowbeT Jy, [ J; a—les—)As

Jim 1
= im —_—
b—w bET fb - l(s) As

At

Now let z € D. Then
4 1
(51 x] (t) = [ (t)x(t) } _ ft az(s)As [ (®)z(t)]® + au(t )x(t)az(t)

I mmh F w588 [y mmAs
for ¢ € [tg,w). So we get

Ba(t) [Br()a]® = (e (Bz(D)]> / ’

t az(s)

a2(s)As + oy ()z(t)
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for ¢ € [tg,w). Taking the V -derivative of both sides gives

{B(t)[5: () t)A} = {oa(t)[oa(t)x(t)

+{as(®)a (e (®) A}” U 5 s]v

Hoa()z(t)]¥

for t € [tg,w). We now claim that the last two terms in this expression cancel. To see
this, put the expression back in terms of our positive solution u, and consider t € A
and t € T4 separately. Careful application of Theorem 2.6 then shows that these
terms do, in fact cancel, and we get

v [Y 1
(BB OB = {oa®) o B)z(0)]*) /t s
It then follows that
£) {B@ Bz} = ar(t) {a2®)[ea )z (]2} = La(),
for t € [tg,w) and the proof is complete. O

Theorem 4.9 (Recessive and Dominant Solutions). Let a € T, and let w := supT.
If w < 0o the we assume p(w) = w. If (2.1) is nonoscillatory on [a,w), then there
s a solution, u, called a recessive solution at w, such that u is positive on [tg,w) for
some ty € T, and if v is any second, linearly independent solution, called a dominant
solution at w, the following hold.

1. limy_,,_ _% 0

2. [ somem At =

3. 8 mAt < 00 for b < w, sufficiently close, and

4. B (?)?t)(t) > B (t)u (t) for t < w, sufficiently close.

The recessive solutzon, u, 18 unique, up to multiplication by a nonzero constant.

The proof of this theorem is directly analogous to the standard proof used in the
differential equations case. See, for example, [5]
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